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We derive analytical expressions for the quantum-noise spectra of a singly resonant active frequency-doubling
laser with single-frequency operation by using a linearized input–output method. For operation of a practical
solid-state laser, we analyze separately the contributions of the various noise sources to the final spectrum.
The change in resonance in the spectrum from an overdamped- (at higher m) to an underdamped- (at smaller
m) driven second-order oscillator where m is the nonlinear coupling coefficient, was experimentally observed
with a diode-pumped Nd:YVO4 1 KTP single-frequency-doubling laser. The experimental result is in good
agreement with the theoretical expectation. © 2000 Optical Society of America [S0740-3224(00)00410-0]
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1. INTRODUCTION
As compact sources of coherent visible light with high in-
tensity, frequency-doubling solid-state lasers pumped by
laser diodes have been attracting interest for various ap-
plications. Recent technological progress has made it
possible to achieve single-frequency operation of this type
of laser with quite low intensity noise.1,2 The systems
that produce several watts of harmonic light are already
available from some vendors.

As one of the simplest nonlinear optical processes,
passive3 (occurring in a cavity that is external to a laser)
and active (occurring within a laser cavity) second-
harmonic generation has been extensively investigated as
a source of nonclassical light. The squeezing character-
istics of active second-harmonic generation were pre-
sented by Collett and Leven.4 They applied the input–
output relation that was originally developed for output
coupling through a cavity mirror5,6 to quadratic coupling
between the fundamental and the harmonic, and they
predicted that the amplitude noise of the harmonic output
could be reduced by 3 dB below the shot-noise level for
quite a high pump rate. White et al. confirmed this re-
sult, using a numerical calculation of the positive P rep-
resentation, and compared various frequency-doubling
systems.7 The effect of the atomic dephasing rate on
squeezing was emphasized.7 Maeda et al. investigated
active harmonic amplitude squeezing, considering the
spatial evolution of light fields in both a laser medium
and a nonlinear crystal.8

More recently, linearized input–output approaches
were used in a cw atomic laser for which the operator
equations of motion were linearized and solved directly,
bypassing the master equation.9,10 In this paper we fol-
low this approach, using the quantum Langevin equation
to obtain operator equations of a single-frequency-
doubling laser directly from the Hamiltonian. The lin-
earized equations of motion for the quadrature fluctua-
0740-3224/2000/101695-09$15.00 ©
tions in the system are derived from the boundary
conditions and solved in Fourier space to yield the ampli-
tude noise spectra. The advantages of this approach are
its conceptual simplicity and the presence of analytical so-
lutions in terms of the various noise sources. We ob-
tained, for the first time to our knowledge, the analytical
solution of an active singly resonant system rather than
merely a numerical calculation as in Ref. 7. Under the
condition of a high pump rate, a maximum of 50% squeez-
ing for the amplitude of the second-harmonic wave is pre-
dicted at zero frequency, in agreement with previous re-
sults. Under the operation conditions of a practical solid-
state laser, the contributions of various noise sources to
the final noise spectrum are analyzed separately in detail.
The change in resonance in the spectrum from an over-
damped driven (at higher m) to an underdamped driven
(at smaller m) second-order oscillator, where m is the non-
linear coupling coefficient, is experimentally observed
with a diode-pumped Nd:YVO4 1 KTP single-frequency-
doubling laser. This experimental result is in good
agreement with the theoretical calculation.

This paper is arranged as follows: In Section 2 we de-
rive linearized equations for the quantum fluctuations of
the single-frequency-doubling laser. In Section 3 the am-
plitude noise spectra are analyzed. A comparison of cal-
culation results and experimental data is made in Section
4. A brief summary of the paper is presented in Section
5.

2. MODEL OF SINGLY RESONANT ACTIVE
SECOND-HARMONIC GENERATION
We consider an active single-frequency-doubling ring la-
ser, as shown in Fig. 1. The laser medium is placed in-
side the laser cavity. All cavity mirrors have high reflec-
tivity for fundamental frequency v0 . An optical
nonlinear crystal is placed in the path of the cavity field.
2000 Optical Society of America



1696 J. Opt. Soc. Am. B/Vol. 17, No. 10 /October 2000 Zhang et al.
The generated harmonic light from the nonlinear crystal
passes through one of the cavity mirrors, which is antire-
flection coated for harmonic frequency 2v0 . To ensure
single-mode oscillation, a loss that depends both on polar-
ization and on direction must be introduced. This result
is achieved by insertion of a Faraday rotator and a
polarization-selecting device such as a Brewster window.

A. Linearized Operator Equations of Motion
We consider the way in which a laser medium consisting
of N four-level atoms (see Fig. 2) interacts with two opti-
cal cavity modes in a ring cavity. The first mode, repre-
sented by the annihilation and creation operators â and
â†, respectively, is the lasing mode with self-energy:

Ĥa 5 \vaâ†â. (1)

It interacts with the active atoms by means of the reso-
nant Jaynes–Cummings Hamiltonian

Ĥ laser1 5 i\g~ â†ŝ23 2 âŝ23
1 !, (2)

where circumflexes indicate operators, g is the dipole-
coupling strength between the atoms and the lasing
mode, and ŝ ij and ŝ ij

1 are the collective Hermitian conju-

Fig. 1. Single-frequency-doubling ring laser. DM, dichroic mir-
ror (reflectivity, R ; 1 for the fundamental, ;0 for the har-
monic); NLC, nonlinear crystal.

Fig. 2. Diode-pumped single-frequency-doubling laser described
by the quantum model: g f , g t , and gs , spontaneous-emission
rates; G, pump rate; G stimulated-emission coefficient; Vout , out-
put harmonic noise; Vcin , second-harmonic input noise; Vpump ,
noise entering the laser from its pump source; Vab , quantum (or
vacuum) noise, as not all of the pump field is absorbed; Vspont32 ,
Vspont21 , noise from spontaneous emission; Vdipole , noise from di-
pole fluctuations; V losses , noise from intracavity losses; NLC,
nonlinear crystal.
gate atomic lowering and raising operators between the
ith and the jth levels. The field phase factors are in-
volved in the definition of the atomic operators. The sec-
ond mode, b̂ and b̂†, is the pump mode with self-energy:

Ĥb 5 \vbb̂†b̂. (3)

It interacts with the active atoms through the resonant
Jaynes–Cummings Hamiltonian

Ĥpump2 5 i\gp~ b̂†ŝ14 2 b̂†ŝ14
1 !, (4)

where gp is the dipole-coupling strength between the at-
oms and the pump mode. The third mode, ĉ and ĉ†, is
the second-harmonic mode with self-energy

Ĥc 5 \vcĉ
†ĉ. (5)

It interacts with the lasing mode through the resonant
Jaynes–Cummings Hamiltonian

Ĥshg3 5 i\
Au

2
~ â†2

ĉ 2 â2ĉ†!, (6)

where Am is the dipole coupling strength between the las-
ing mode and the second-harmonic mode.

The standard techniques of the linearized input–
output method6 are used to couple the lasing atoms and
the cavity modes to reservoirs and to derive the operator
quantum Langevin equations of motion for the laser.
The atomic spontaneous emission from level u4& to level
u3&, level u3& to u2&, and level u2& to u1& is included in our la-
ser model, with rates g f , g t , and gs , respectively. The
rates of collisionally or lattice-induced phase decay of the
lasing coherence and pump coherence are gP and gQ , re-
spectively. The laser cavity damping rate that is due to
other losses is 2k l . The pump mode damping occurs
through an input–output mirror with a rate 2kb . The
cavity decay rate for the second-harmonic mode is 2kc .
We use (â, b̂, ĉ, ŝ34 , ŝ23 , ŝ12 , ŝ3 2 ŝ2 , ŝ4 2 ŝ1) for the
system operators, (dÂl , B̂, dĈ, dĈf , dĈt , dĈs , dĈP , and
dĈQ) for the input fields, and (2k l , 2kb , 2kc , g f ,
g t , gs , gP , gQ) for the coupling constants.

According to our laser system for singly resonant active
SHG, the following assumptions are applied in the calcu-
lations:

(i) The pump field decay is rapid (kb large), which cor-
responds to a normally experimental situation without
the resonance of pump field.

(ii) The second-harmonic mode decay is rapid (kc
large), consistent with the experimental situation in
which the second-harmonic mode is not resonant.

(iii) The upper pump level decay is rapid (g f large),
which is a desirable condition for efficient pumping and is
satisfied in most experimental systems.

(iv) The phase decays of the laser and pump coher-
ences are rapid (gP and gQ large). This is also a good as-
sumption for most lasers.

These assumptions mean that the pump mode, the up-
per pump level, and the atomic coherences evolve on
much shorter time scales than the other variables.
Hence we can make the approximation of adiabatically
eliminating the equations for b̂, ĉ, ŝ4 , ŝ14 and ŝ23 by set-
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ting their time derivatives to zero. So we obtain the fol-
lowing operator equations of motion for the laser4,11:

â 5
G̃

2
~ ŝ3 2 ŝ2!â 2 k lâ 2 mâ†â2 1 2Amâ†dĈ

1 A2k ldÂl 2 AG̃dL̂p , (7)

ṡ̂1 5 2
4Gpkbŝ1

~kb 1 2Gpŝ1!2 ~B̂†B̂ 1 B̂B̂†!

1
4Gpkb

~kb 1 2Gpŝ1!2 ~dL̂q
†dL̂q 1 dL̂qdL̂q

† !

1 A8Gpkb

~kb 2 2Gpŝ1!

~kb 1 2Gpŝ1!2 ~dL̂q
†B̂ 1 dL̂qB̂†!

1 gsŝ2 2 AgsdL̂, (8)

ṡ̂2 5
G̃

2
~ ŝ3 2 ŝ2!~ ââ† 1 ŝ†â ! 2 AG̃~dL̂pâ† 1 dL̂pp

† â !

1 g tŝ3 2 gsŝ2 1 AgsdL̂ 2 Ag tdL̂t , (9)

ṡ̂3 5
G̃

2
~ ŝ3 2 ŝ2!~ ââ† 1 ŝ†â ! 2 AG̃~dL̂pâ† 1 dL̂p

† â !

1
4Gpkbŝ1

~kb 1 2Gpŝ1!2 ~B̂†B̂ 1 B̂B̂†!

2
4Gpkb

~kb 1 2Gpŝ1!2 ~dL̂q
†dL̂q 1 dL̂qdL̂q

† !

2 A8Gpkb

~kb 2 2Gpŝ1!

~kb 1 2Gpŝ1!2 ~dL̂q
†B̂ 1 dL̂qB̂†!

2 g tŝ3 1 Ag tdÂt , (10)

where

G̃ 5
2g2

gP
, (11)

Gp 5
gp

2

2gQ
(12)

are the stimulated-emission–absorption rates per photon
for the laser and the pump modes, respectively. The
noise terms that originate from the various vacuum res-
ervoirs are

dL̂ 5 dĈs
†ŝ12 1 ŝ12

1 dĈs 5 Aŝ2dX̂Cx
, (13)

dL̂ 5 dĈs
†ŝ23 1 ŝ23

1 dĈt 5 A^ŝ3&dX̂Ct
, (14)

dL̂p 5 ~dĈP 2 dĈP
† !s23 , (15)

dL̂q 5 ~dĈQ 2 dĈQ
† !s14 , (16)

dL̂Q 5 dL̂q
† 1 dL̂q 5 A^ŝ1 1 ŝ4&dX̂q , (17)

dL̂P 5 dL̂p
† 1 dL̂p 5 A^ŝ3 1 ŝ2&dX̂p . (18)
For all these terms the first-order expectation values are
zero (^dL̂i& 5 0). With the operator relationships ŝ ijŝ ij

1

5 ŝ i , ŝ ij
1ŝ ij 5 ŝ j , and ŝ ij

1ŝ ij
1 5 ŝ ijŝ ij 5 0, the commuta-

tor relations between system and input fields, and the
properties of the vacuum fields, the following second-
order expectation values can be calculated:

^dL̂~t !dL̂~t8!& 5 ^ŝ2&d ~t 2 t8!, (19)

^dL̂t~t !dL̂t~t8!& 5 ^ŝ3&d ~t 2 t8!, (20)

^dL̂Q~t !dL̂Q~t8!& 5 ^ŝ1 1 ŝ4&d ~t 2 t8!, (21)

^dL̂P~t !dL̂P~t8!& 5 ^ŝ3 1 ŝ2&d ~t 2 t8!. (22)

By taking expectation values of Eqs. (7)–(10) and using
the semiclassical approximation to factorize the expecta-
tion values, we obtain the following laser rate equations:

ȧ 5
G

2
~J3 2 J2!a 2 k la 2 m̃a* a2, (23)

J̇1 5 2GJ1 1 gsJ2 , (24)

J̇2 5 G~J3 2 J2!aa* 1 g tJ3 2 gsJ2 , (25)

J̇3 5 2G~J3 2 J2!aa* 2 g tJ3 1 GJ1 , (26)

where ^â&/AN 5 a and ^ s i&/N 5 Ji are the expectation
values of the laser mode and atomic populations, respec-
tively, in a scaled linear form,

G 5
8Gpkb

~kb 1 2GpJ1!2 ^B̂†B̂& (27)

is the pump rate, and

m̃ 5 Nm.

Rate G is proportional to stimulated-emission cross sec-
tion es :

G 5 NG̃ 5 esrc,

where r is the atomic density and c is the speed of light in
the medium. Normally one assumes either that the
ground state is not significantly depleted by the pumping
(J1 ' constant) or that the pump beam itself is not sig-
nificantly depleted @J1 ! kb /(2Gp)#. In both cases the
pump rate then becomes proportional to the intensity of
pump beam. One can obtain the semiclassical steady-
state solution by setting the time derivatives to zero in
Eqs. (23)–(26).

B. Linearized Fluctuation Equations
In the approximation of a large photon number, we can
introduce a quasi-linearization to express â(t), ŝ i(t), and
B̂(t) as

â~t ! 5 ANa0 1 dâ~t !, ŝ i~t ! 5 NJi0 1 dŝ i~t !,

B̂~t ! 5 ANB0 1 dB̂~t !, (28)

where a0 and Ji0 are the semiclassical steady-state solu-
tions of Eqs. (23)–(26) for the laser field amplitude and
the population of level i, respectively. B0 is the coherent
amplitude of the pump mode. Without loss of generality
we assign a0 and B0 as real. The quantum fluctuations
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dâ, dŝ i , and dB̂ are small and have zero mean. This is
normally a good assumption for the magnitude of the la-
ser amplitude. By substituting Eqs. (28) into Eqs. (7)–
(10) and retaining only linear terms in the fluctuations we
obtain the following set of linear differential equations for
the quadrature and population fluctuations:

dX̂
˙

5 G~dŝ3 2 dŝ2!a0 2 m̃a0* a0dX̂a 2 m̃a0
2dX̂a

1 A2k ldX̂Al
1 2Am̃a0* dX̂c 2 AG~J3 1 J2!dX̂p ,

(29)

dṡ̂1 5 2GA1 2 hdŝ1 1 gdŝ2 2 AGJ10hdX̂B

1 AgsJ2dX̂Cx
1 @G~1 2 h!~J4 1 J1!#1/2dX̂q ,

(30)

dṡ̂2 5 G~dŝ2!a0
2 1 G~J30 2 J20!a0dX̂a 1 g tdŝ3 2 gdŝ2

1 AgsJ2dX̂Cx
2 Ag tJ3dX̂Ct

2 AG~J3 1 J2!a0dX̂p , (31)

dṡ̂3 5 2G~dŝ3 2 dŝ2!a0
2 2 G~J30 2 J20!a0dX̂a

2 g tdŝ3 1 GA1 2 hdŝ1 1 AGJ1hdX̂B

1 AgsJ2dX̂Cx
2 @G~1 2 h!~J4 1 J1!#1/2dX̂q

1 Ag tJ3dX̂Ct
1 AG~J3 1 J2!a0dX̂p , (32)

where the quadrature amplitude fluctuations of the fields
are defined by

dX̂a 5 dâ 1 dâ†, dX̂Al
5 dÂl 1 dÂl

† ,

dX̂c 5 dĈ 1 dĈ† ... . (33)

Also, we have

A1 2 h 5
kb 2 2GpJ10

kb 1 2GpJ10
, (34)

h 5
8GpJ10kb

~2GpJ10 1 kb!2 . (35)

h is the efficiency with which pump light is absorbed by
the lasing atoms. The boundary condition of the second-
harmonic output field3 is

Ĉout 5 Amâ2 2 dĈm , (36)

where Ĉout is the second-harmonic output field. The am-
plitude quadrature fluctuation is

dX̂Cout
5 2Am̃a0dX̂a 2 dX̂c . (37)

3. NOISE SPECTRA OF THE SECOND-
HARMONIC OUTPUT FIELD
A. Solutions of the Second-Harmonic Noise Spectrum
In frequency space one can solve Eqs. (29)–(32) for the
quadrature fluctuations of the output fields by using Eq.
(37); hence the expression for the quadrature amplitude
fluctuations of second-harmonic output is obtained in
terms of the input field fluctuations

dXCout
5 $@2m̃a0

2 2 iv 2 F1~v!#dXc

1 2Am̃a0AGJ1F2~v!A~1 2 h!dXq

1 2Am̃a0AGJ1F2~v!AhdXB

1 2Am̃a0AgsJ2F3~v!dXCx

1 2Am̃a0Ag tJ3F4~v!dXCt

1 2Am̃a0AG~J3 1 J2!@1 2 F4~v!#dXp

1 2Am̃a0A2kldXAl
%/@iv 1 F1~v! 1 2m̃a0

2#%,

(38)
where the absence of the circumflexes indicate Fourier
transforms and

F1~v!

5
G2a0

2~J3 2 J2!~2iv 1 gs 1 2G̃!

~iv 1 G̃!~iv 1 gs 1 2Ga0
2 1 g t! 1 gs~Ga0

2 1 g t!
,

(39)

F2~v!

5
Ga0~iv 1 gs 2 g t!

~iv 1 G̃!~iv 1 gs 1 2Ga0
2 1 g t! 1 gs~Ga0

2 1 g t!
,

(40)

F3~v!

5
Ga0~iv 1 2G̃ 1 g t!

~iv 1 G̃!~iv 1 gs 1 2Ga0
2 1 g t! 1 gs~Ga0

2 1 g t!
,

(41)

F4~v!

5
Ga0~iv 1 2G̃ 1 gs!

~iv 1 G̃!~iv 1 gs 1 2Ga0
2 1 g t! 1 gs~Ga0

2 1 g t!
,

(42)

where G̃ 5 GA1 2 h. The second-harmonic amplitude
noise spectrum (Vout) is

Vout~v! 5 ^udXoutu2&

5 $@2m̃a0
2 2 iv 2 F1~v!#2Vcin

1 4m̃a0
2GJ1@F2~v!#2~1 2 h!Vab

1 4m̃a0
2GJ1@F2~v!#2hVpump

1 4m̃a0
2gsJ2@F3~v!#2Vspont21

1 4m̃a0
2g tJ3@F4~v!#2Vspont32 1 4m̃a0

2G~J3

1 J2!@1 2 F4~v!#2Vdipole

1 8m̃a0
2klV losses%/@iv 1 F1~v! 1 2m̃a0

2#2,

(43)
where brackets stand for absolute squares. A variety of
noise sources in Eq. (43) is separately expressed term by
term, Vcin is second-harmonic input noise, Vab is quantum
(or vacuum) noise that is due to the pump field’s not being
completely absorbed, Vpump is pump source intensity
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noise, Vspont21 is spontaneous-emission noise from level u2&
level to u1&, Vspont32 is spontaneous-emission noise from
level u3& to u2&, Vdipole is the dipole fluctuation noise be-
tween levels u3& and u2&, and V losses is noise introduced
from intracavity losses. The second-harmonic amplitude
noise spectrum Vout is normalized to the QNL. Vout 5 1
indicates QNL operation. The quantum-noise sources
are all at this level; i.e., Vcin 5 Vab 5 Vspont21 5 Vspont32
5 V losses 5 1. However, the pump noise spectrum Vpump
is arbitrary.

B. Intensity-Noise Characteristics of Second-Harmonic
Output from a Singly Resonant Active Frequency-
Doubling Laser
We first consider the limit in which the losses are negli-
gible, g t . k l . 0, and the laser operates well above
threshold, Ga0

2 @ G, m̃a0
2, gs . In this limit Eq. (43) is re-

duced to the following expression:

Vout~v!

5
v2

v2 1 ~4m̃a0
2!2

1
2~2m̃a0

2!2~v2 1 gs
2!

@4m̃a0
2~gs 1 2G̃! 2 2v2#2 1 v2~8m̃a0

2 1 gs 1 2G̃!2

3 @~1 2 h! 1 hVpump#

1
2~2m̃a0

2!2@v2 1 ~2G̃!2#

@4m̃a0
2~gs 1 2G̃! 2 2v2#2 1 v2~8m̃a0

2 1 gs 1 2G̃!2 .

(44)

In Eq. (44), only those noise terms that are due to the
vacuum field input at the mirror (first term), noise from
the pump source (second term), and spontaneous-
emission noise caused by decay from the lower lasing
level (third term) are significant. Consider the situation
in which the decay from the lower lasing level is much
faster than the second-harmonic conversion rate and the
pump rate, gs @ G, m̃a0

2. Again Eq. (44) is reduced to

Vout~v! 5
v2

v2 1 ~4m̃a0
2!2

1
2~2m̃a0

2!2

~4m̃a0
2!2 1 v2

3 @~1 2 h! 1 hVp#. (45)

The contribution from the lower-lasing-level decay is neg-
ligible. If the pump is quantum-noise limited, Vpump
5 1, from Eq. (45) the maximum of 50% squeezing for the
amplitude of the second-harmonic wave is obtained at
zero frequency and decreases along with the increase of
analyzed frequency, as shown in Fig. 3. This result is in
agreement with that predicted4,5 at the ideal laser limit.

Now we consider typical gas and solid-state lasers op-
erating close to threshold (in the same order of power).
Hence to study their intensity-noise characteristics we
abandon the approximation of Eq. (44) and adopt the ap-
proximation that the decay rate of the lower lasing level
is the most rapid, gs @ g t , G, Ga0

2. In this limit we get
the following expression for the spectrum:
Vout~v! 5 ($@2m̃a0
2~Ga0

2 1 G̃ 1 g t! 1 v2 2 2Ga0
2~m̃a0

2

1 k l!#
2 1 v2~2m̃a0

2 2 Ga0
2 2 G̃ 2 g t!

2%

1 $4m̃a0
2GJ1G2a0

2@1 1 h~Vpump 2 1 !#%

1 ~4m̃a0
2g tJ3G2a0

2! 1 $4m̃a0
2G~J3 1 J2!@~g t

1 G̃!2 1 v2#% 1 $8m̃a0
2kl@~Ga0

2 1 G̃ 1 g t!
2

1 v2#%)/@~vr
2 2 v2!2 1 v2~gL!2#; (46)

vr 5 @2m̃a0
2~Ga0

2 1 G̃ 1 g t! 1 2Ga0
2~m̃a0

2 1 k l!#
1/2,
(47)

gL 5 2m̃a0
2 1 Ga0

2 1 G̃ 1 g t , (48)

where vr indicates the resonant frequency in the spec-
trum and gL is the damping rate of the oscillations. If
the resonance-driven second-order oscillator is under-
damped (vr . gL), an oscillation known as resonant re-
laxation oscillation (RRO) is produced. If the resonance
is overdamped (vr , gL), the oscillation is suppressed.
Compared with the single-frequency-doubling laser, the
single-frequency laser that has no nonlinear crystal in the
laser cavity extracts the fundamental field v0 from output
coupling mirror (km) instead of from nonlinear coupling
m̃a0

2. We can see from Eqs. (23)–(26) and (36) that, if
output coupling mirror km equals nonlinear conversion
m̃a0

2 and the other parameters do not change, the output
power of the single-frequency laser is equal to the single-

Fig. 3. Spectra of the output harmonic field in the limit well
above threshold. Vpump 5 1, ma0

2 5 4.27 3 106 s21.

Table 1. Parameters of a Nd:YVO4 Single-
Frequency-Doubling Ring Laser

Length of cavity L 350 mm
Single-pass losses dcav 3%
Maximum pump power Pmax 1 W
Decay rate of intracavity losses k1 1.28 3 107 s21

Number of lasing atoms N 1017

Decay rate of upper laser level g t 104 s21

Decay rate of lower lasing level g 3.3 3 107 s21

Simulated emission rate per photon G 1 3 1011 s21

Maximum pump rate G 8 s21

Nonlinear conversion rate m̃ 2 3 1013 s21
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frequency-doubling laser. The intensity-noise spectrum
of the single frequency is described by the following
expression10:

Vout~v! 5 ($@2km~Ga0
2 1 G̃ 1 g t!

1 v2 2 2km~m̃a0
2 1 k l!#

2

1 v2~2km 2 Ga0
2 2 G̃ 2 g t!

2%

1 $2kmGJ1G2a0
2@1 2 h~Vpump 2 1 !#%

1 ~2kmg tG
2a0

2J3!

1 $2kmG~J3 1 J2!~@g t 1 G̃!2 1 v2#%

1 $4kmkl@~Ga0
2 1 G̃ 1 g t!

2 1 v2#%)/

@~vr8
2 2 v2!2 1 v2~gL8 !2#, (49)

where the frequency of the RRO vr8 is

vr8 5 @2Ga0
2~km 1 k l!#

1/2 (50)

and damping rate g l8 is

Fig. 4. Frequency dependence of the various noise sources. (a)
Resonance overdamped (vr , gr), with m̃ 5 2 3 1013 s21; (b)
resonance underdamped (vr . gr) with m̃ 5 2 3 1011 s21; other
parameters, those in Table 1 with Vpump 5 1. a, Noise of the
harmonic with all contributions added; b, contribution from VCin ;
c, contribution from Vpump ; d, contribution from Vspont32 ; e,
shows the contribution from Vdipole ; f, contribution from V losses .
g l8 5 Ga0
2 1 G̃ 1 g t . (51)

Comparing Eqs. (46) and (49) shows that the numera-
tors of the first term (vacuum noise input) are identical,
the numerators of the second to fifth terms differ by a fac-
tor 2, and the common denominators are widely different.
The intensity-noise spectrum of the single-frequency laser

Fig. 5. Harmonic spectra for different pump noise from that of
Fig. 4(a). Resonance overdamped (vr , gr), with m̃ 5 2
3 1013 s21; (b) resonance underdamped (vr . gr), with m̃ 5 2
3 1011 s21. a, curve a pump noise Vpump 5 1; b, Vpump
5 20 dB; c, Vpump 5 30 dB; d Vpump 5 50 dB.

Fig. 6. Intracavity fundamental photon number a0
2 per atom of

the lasing mode versus m̃.
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is commonly dominated by the RRO because vr8 . g l8 .
The frequency of the RRO vr and damping rate g l of the
single-frequency-doubling laser include nonlinear conver-
sion m̃a0

2, so the doubling process will influence the RRO
significantly.

The Nd:YVO4 ring-doubling laser runs in this regime,
where gs @ g t , G, Ga0

2. The parameters of the Nd:YVO4
ring-doubling laser are listed in Table 1. These param-
eters were determined in the same way as in the research
reported in Ref. 10. The frequency dependence of the
second-harmonic output intensity noise is illustrated in
Fig. 4, where the second-harmonic intensity noise relative
to the QNL is plotted on a log–log scale [10 log10(Vout)
versus log10(v/2p); hence 0 dB indicates that the noise
level is equal to the QNL (Vout 5 1)]. In this figure the
intensity-noise level of the second-harmonic output is
shown with respect to a QNL pump source (Vp 5 1). We
show the full intensity noise spectrum (curves a) as well
as the contributions of the different noise sources to the
spectrum (curves b–f ). It is clear from Fig. 4 that the
intensity-noise spectrum of the harmonic output at the
frequency far above vr asymptotes to the QNL because of

Fig. 7. a, Frequency vr of the oscillations and b, damping rate
gr versus m̃.

Fig. 8. Harmonic spectra for three values of m̃ with Vpump
5 50 dB: a, m̃ 5 1013; b, m̃ 5 1012; c, m̃ 5 1011.
the presence of vacuum fluctuations. The other four
noises are small and have no influence at these frequen-
cies. At frequencies near vr , chiefly dipole noise and in-
tracavity losses contribute to the spectrum. The noise
spectrum can be changed by the intensity-noise level of
the pump source shown in Fig. 5. Figure 5 illustrates the
main effect of pump noise at a frequency that is obviously
below vr .

We can alter nonlinear coupling strength m̃ by chang-
ing the temperature or the matched angle of the optical
nonlinear crystal. Figure 6 shows the intracavity photon
number of fundamental wave a0

2 per atom versus m̃, ac-
cording to Eqs. (23)–(26). Frequency vr of the oscilla-
tions (curve a) and the damping rate gL (curve b) are
shown in Fig. 7 versus m̃. The relative values between
vr and gL are changed relative to m̃. So the resonance in
the spectrum at frequency vr can be changed from the
overdamped- to the underdamped driven second-order os-
cillator according to m̃ as shown in Fig. 8. The resonance
presents the overdamp at large m̃ and the underdamp at
small m̃. We see that the doubling process can signifi-
cantly damp the relaxation oscillation.

4. COMPARISON OF THEORETICAL
CALCULATION AND EXPERIMENTAL
RESULT WITH A Nd:YVO4 1 KTP SINGLE-
FREQUENCY-DOUBLING LASER
The experimental setup is shown in Fig. 9. The ring
Nd:YVO4 laser is pumped by a laser diode through an op-
tical coupling system. A transmission cross-coefficient
crystal and a half-wave plate are placed in the cavity as
an optic diode. A type II critically phase-matched KTP
crystal is used to generate the second-harmonic field at
532 nm. The maximum output power obtained is 40
mW, with an optical conversion efficiency of 6%.

The optical signals were detected with a single FND-
100 silicon photodiode from EG&G and then amplified by
OEI AH0013 and Miteq AU1310 integrated amplifiers.
This detector has a large dynamic range and a bandwidth
from 10 kHz to 50 MHz. The power spectrum of the sig-
nal was recorded with a Hewlett-Packard HP-8590L spec-
trum analyzer. The saturation characteristics of the
photodiodes were checked with as much as 40 mW of op-
tical power incident upon one photodiode. Neither satu-
ration of the dc part nor saturation of the ac noise of the
photocurrent at frequencies up to 50 MHz was detected.
We calibrated the QNL by detecting the noise spectrum of
white-light illumination under the same power level.

Fig. 9. Experimental setup of a Nd:YVO4 ring laser for intra-
cavity frequency doubling. M1–M4, mirrors; TGG; terbium gal-
lium garnet crystal.
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When the KTP crystal axes are adjusted to a 45° angle
with respect to the polarization of the fundamental field,
there is a maximum nonlinear conversion efficiency. We
can change nonlinear coupling strength m̃ by rotating the
KTP crystal axes. Figure 10 shows the intensity noise
spectra of the harmonic field measured experimentally
and the calculation result that w presented in Section 3.
Trace a in Fig. 10 is the calculated and measured inten-
sity noise spectrum for the 8-mW harmonic output with a
pump power of 0.85 W and its fundamental field linearly
polarized at a 45° angle with respect to the KTP crystal
axes, trace b is the intensity-noise spectrum for the
0.85-mW harmonic output with same pumped power but
with KTP rotated a small angle from 45°, and trace c is
the intensity-noise spectrum for the 70-mW harmonic out-
put with same pump power as a result of a larger-angle
rotation of KTP. G, which corresponds to this pump
power, is 6 s21/atom. We found that we obtained the best
fit between theory and experiment by setting Vpump
5 500,000, i.e., 57 dB above the QNL. When we mea-
sured the intensity-noise level of the laser diode we used a
neutral-density filter to reduce the power of the pump
field to the level required for the detector. We ensured
that all the spatial modes of the laser diode were recorded
by focusing the laser radiation onto the photodetectors as
tightly as possible. The value of pump noise Vpump was
obtained from the measured data after optical attenua-
tion was taken into account. We found that the reso-
nance in the spectrum presents an overdamp at large m̃
and an underdamp at small m̃, which agrees with the the-
oretical results from the quantum model.

5. CONCLUSION
We have presented an analytical expression for the
quantum-noise spectra of a singly resonant active
frequency-doubling laser with single-frequency operation
obtained by means of the linearized input–output
method. This method leads straightforwardly to an ana-
lytical expression for the full noise spectra of the output

Fig. 10. Harmonic noise spectra with various nonlinear Cou-
pling strengths: a, Intensity noise spectrum of theory and ex-
periment for the 8-mW harmonic output, with the parameter m̃
set to 2 3 1013 s21; b, for the 0.85-mW harmonic output; param-
eter m̃ is set to 1 3 1012 s21; c, for the 70-mW harmonic output;
parameter m̃ set to 2 3 1011 s21.
harmonic field. The expression with clearly separated
noise terms that stand for the various noise contributions
permits greater physical insight into the noise processes,
and the result includes the full spectral properties of the
pump field and any other input fields, although a maxi-
mum of 50% squeezing of the amplitude of the second-
harmonic wave is theoretically predicted when there is a
high pump rate at zero frequency. Unfortunately, in
practical lasers there are large amounts of both pump
noise and thermal noise at approximately zero frequency,
and the required pump power for squeezing is too great;
therefore we know of no experiment with which to dem-
onstrate this type of squeezing. Our calculations showed
the influences of various noise sources on the noise spec-
trum of output field. Reducing the pump noise and in-
creasing pump rate are keys to reaching squeezing. With
a practical solid-state laser, the good agreement of experi-
mental and calculated results of the change of resonance
in the spectrum from an overdamped- (at higher m) to an
underdamped- (at smaller m) driven second-order oscilla-
tor versus the nonlinear coupling coefficient m ensures the
reliability of our conclusion. The calculated expression
can provide useful references for the investigating noise
of an active frequency-doubling laser.
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